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Abstract: Aligned  SnS  nanowires  arrays  were  grown  via  a  simple  chemical  vapor  deposition  method.  As-synthesized  SnS
nanowires  are  single  crystals  grown  along  the  [111]  direction.  The  single  SnS  nanowire  based  device  showed  excellent  re-
sponse to near infrared lights with good responsivity of 267.9 A/W, high external quantum efficiency of 3.12 × 104 % and fast re-
sponse  time.  Photodetectors  were  built  on  the  aligned  SnS  nanowire  arrays,  exhibiting  a  light  on/off  ratio  of  3.6,  and  the  re-
sponse and decay time of 4.5 and 0.7 s, respectively, to 1064 nm light illumination.
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1.  Introduction

Orthorhombic  tin  sulfide  (SnS)  is  an  important  member
of  anisotropic  layered IV–VI  group semiconductors,  where  Sn
atoms  are  coordinated  to  three  S  atoms  to  form  the  puc-
kered  Sn–S  layers  coupled  by  weak  van  der  Waals  forces[1, 2].
The  mid  near  infrared  (NIR)  direct  band  gap  of  1.3  eV  and
high absorption coefficient larger than 104 cm–1 make SnS an
ideal  candidate  for  NIR  photodetectors[3−5].  Due  to  the  high
specific  surface  area  and  the  confinement  of  charge  carriers,
one-dimensional  (1D)  or  two-dimensional  (2D)  SnS  nano-
structures  exhibited  obvious  advantages  compared  with  the
thin  film  or  nanoparticle  counterparts[6−10].  For  example,  SnS
nanobelts  from  solution  method  showed  a  responsivity  of
3 μA/(W·cm). SnS nanobelts from vapor-based method exhib-
ited  excellent  photoresponsivity  of  300  A/W  under  800  nm
light.  SnS  nanosheets  showed  obvious  anisotroic  photore-
sponse  with  a  photoresponsivity  of  365  A/W  to  808  nm  light
and  the  performance  can  be  further  improved  by  Au  nano-
particles decoration.

Nanowire (NW) arrays have the characteristics of large ef-
fective  irradiation  area,  the  multiple  scattering  of  incident
light,  and  the  increased  path  length  of  incident  light.  Using
NW  arrays  to  trap  light  provides  an  effective  way  to  improve
the absorption capacity of photoelectric devices[11−15].  For ex-
ample,  Jie et  al.  demonstrated ZnO–MoS2 core–shell  nanopil-
lar arrays based broadband ultraviolet-visible-near infrared pho-
todetectors[11].  They  found  that  the  photocurrent  is  impro-
ved by up to 60 times compared with the planar  heterojunc-
tions.  Fan et  al.  developed  a  template-guided  vapor  phase
method  to  grow  CH3NH3PbI3 (MAPbI3)  NW  arrays  with  unp-
recedented  control  of  NW  diameter  from  the  bulk  (250  nm)
to  the  quantum  confined  regime  (5.7  nm)[12].  This  strategy
enabled  a  56-fold  increase  in  internal  photoluminescence

quantum  yield,  and  2.3-fold  increase  in  out-coupling  effi-
ciency. Moreover, their group also achieved an impressive op-
timal  absorption  efficiency  (~99%)  by  tuning  the  highly
ordered Ge nanopillar arrays through shape and geometry con-
trol[14].  As a result,  it  is  also expected that the light-absorbing
ability  of  SnS NWs can be remarkably improved by using NW
arrays, giving high performance NIR photodetectors.

In  this  work,  we  report  the  preparation  of  aligned  SnS
NW  arrays  using  chemical  vapor  deposition  method.  As-
grown  individual  SnS  NW  exhibited  excellent  response  to
near infrared lights with good responsivity of 267.9 A/W, high
external  quantum  efficiency  of  3.12  ×  104 %  and  fast  re-
sponse  time.  Photodetectors  constructed  from  the  aligned
SnS  NW  arrays  were  demonstrated  to  be  capable  to  detect
NIR  lights  (808–1450  nm)  with  the  photocurrent  enhanced
about 5 times compared with single NW.

2.  Experimental

Aligned  SnS  NW  arrays  were  synthesized  via  a  simple
chemical  vapor  deposition method.  In  a  typical  process,  high
purity  SnS  powders  (99.5%,  Alfa)  were  put  into  a  ceramic
boat,  which  was  placed  in  the  center  of  a  quartz  tube  of  a
tube  furnace.  The  silicon  substrate  covered  with  a  thin  layer
of  Au  film  (10  nm)  was  placed  at  the  downstream  about  1–
2  cm  away  from  the  boat.  The  furnace  was  first  purged  with
high purity  Ar  gas  for  30 min and then heated to  750 °C and
kept  at  that  temperature  for  30  min.  After  cooling  down  to
room temperature, a layer of black powders was found depos-
ited on the whole substrate.

The  prepared  samples  were  characterized  using  scan-
ning  electron  microscope  (SEM,  FEI  NanoSEM650),  transmis-
sion electron microscope (TEM, JEM-2100F) equipped with an
X-ray energy dispersive spectrometer (EDS) and X-ray diffracto-
metry (XRD, Rigaku D/Max-2550).

To  investigate  the  optoelectronic  properties,  the  as-
grown  SnS  nanowires  were  dispersed  into  isopropanol  (IPA)
and  dropped  onto  SiO2/Si  substrates.  Standard  photolitho-
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graphy was then performed to pattern the electrode. 100 nm
Au  was  then  deposited  on  the  terminals  of  a  single  SnS  NW
as the source and drain electrodes.  The corresponding meas-
urements  were  carried  out  with  a  probe  station  connected
with  a  Keysight  B1500A  semiconductor  characterization
system.  Near  infrared  lasers  with  different  wavelengths  and
tunable  light  intensities  were  adopted  as  the  illumination
source. All measurements were carried out in air at room tem-
perature.

3.  Results and discussions

Fig. 1(a) showed the cross-section view SEM image of the
sample  deposited  on  Si  substrate.  High  density  nanowires
were  found  aligned  on  the  substrate,  forming  into  aligned
NW arrays. Typical NWs have the diameters ranging from 100
to  300  nm.  High-resolution  SEM  image  of  a  single  NW  was
shown  in Fig.  1(b),  where  the  NW  has  a  diameter  of  183  nm
with  smooth  surface.  Nanoparticle  was  found  on  top  of  the
NW, indicating typical vapor–liquid–solid (VLS) growth mechan-
ism[16−20].  To  get  information  about  the  composition  of  the
NWs,  XRD  was  carried  out  and  the  corresponding  XRD  pat-
tern  was  shown  in Fig.  1(c).  All  the  typical  peaks  in  this  pat-
tern  can  be  readily  indexed  to  pure  SnS  with  the  or-
thorhombic  phase  (JCPSD  card,  No.  39-0354).  TEM  was  then
performed  to  get  information  about  the  microstructure  of
the  SnS  NW.  A  TEM  image  of  an  individual  SnS  NW  is  depic-
ted in Fig.  1(d),  in  consistent  with the SEM result.  The corres-
ponding  selected-area  electron  diffraction  (SAED)  pattern  in
Fig. 1(e) indicated the single-crystalline nature of the SnS NW.
Fig.  1(f) gave  the  high-resolution  TEM  (HRTEM)  image  of  the
SnS  NW.  The  clearly  resolved  lattice  fringes  were  0.29,  0.41,
and  0.28  nm,  corresponding  to  the  (101),  (110),  and  (111)
planes of orthorhombic SnS phase, respectively. Based on the
above  results,  it  confirmed  that  single  crystalline  SnS  NWs
along  the  [111]  directions  were  successfully  synthesized  in
the present work.

To  study  the  photoresponse  properties  of  the  synthes-
ized  SnS  sample,  single  NW  device  was  first  fabricated  via  a
conventional  photolithography  and  lift-off  process,  accord-

ing to our previous reports[21−24]. Fig. 2(a) showed the SEM im-
age  of  the  fabricated  single  NW  device,  where  the  NW  was
found  gated  by  two  electrodes.  The  channel  width  of  the
device  is  around  5 μm.  The I–V characteristics  of  the  device
measured  at  room  temperature  in  dark  and  with  NIR  light
illumination  (808,  915,  1064,  1342  nm)  were  depicted  in
Fig.  2(b).  It  can  be  seen  that  the  photocurrent  increased
sharply when the device was exposed to light irradiation.  Be-
sides,  the  devices  showed  obvious  response  to  all  the  given
light irradiation, confirming the NIR detection ability room tem-
perature.  The  current  versus  voltage  curves  of  the  device  to
1064 nm light irradiation at various light intensities as well as
the  dark  current  were  demonstrated  in Fig.  2(c).  With  in-
creased  light  intensities,  the  photocurrents  gradually  in-
creased.  The relationship between photocurrent  and light  in-
tensity  of  the  device  was  shown  in Fig.  2(d),  following  a
power law of ΔI ~ 9.4 × P0.44. It meant that the increase of pho-
tocurrent  would  be  gradually  slowed  down  with  enhanced
P[25−27].  Dynamic  photoresponse  performance  of  the  device
to  1064  nm  NIR  light  with  the  light  intensity  of  8.1  mW/cm2

was shown in Fig.  2(e).  The photocurrents  versus time curves
were  recorded  at  3  V  bias  by  periodically  turning  the  NIR
light on and off.  From the curves,  we can see that the photo-
current  increased  sharply  and  was  stable  at  the  saturated
state when the light  was turned on.  While  it  immediately  de-
creased  and  recovered  to  its  initial  state  once  the  light  was
turned off.  Over  the six  test  cycles,  there is  no obvious decay
of  the  photocurrent  upon  turning  on/off  the  light  periodic-
ally,  implying  a  good  reproducibility  and  stability  of  the
device to NIR light irradiation.

Response time and decay time are the key parameters to
measure  the  response  speed  of  a  photodetector.  Generally,
the  response  time  is  defined  as  the  time  taken  for  the  cur-
rent  of  the  device  to  increase  from  10%  to  90%  of  the  peak
value,  while  the  decay  time  is  defined  to  be  the  opposite[27].
Fig.  2(f) showed the response time and recover time curve of
the  device,  which  were  measured  to  be  0.22  and  1.42  s,  re-
spectively,  comparable  to  some  of  the  previous  reported
data[8−10].
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Fig. 1. (Color online) (a, b) SEM images, (c) XRD pattern, (d) TEM image, (e) SAED pattern and (f) HRTEM image of the synthesized SnS nanowires.
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The  responsivity  (Rλ)  and  the  external  quantum  effi-
ciency (EQE) are important parameters to evaluate a photode-
tector. They can be defined as[27−29]: 

Rλ =
ΔI
PS

=
Iphoto − Idark

PS
, (1)

 

EQE = Rλ
hc
eλ

. (2)

In  these  equations, P is  the  power  intensity  of  the  incid-
ent light, S is the effective illumination area, Iphoto and Idark are
the photo current and the dark current, h is the Planck’s con-
stant, c is the velocity of incident light, e is the elementary elec-
tronic charge, and λ is the wavelength of incident light. Accord-
ing to these equations, under 1064 nm light illumination with
the  light  intensity  of  8.1  mW/cm2,  the  responsivity  and  EQE
are  calculated  to  be  267.9  A/W  and  3.12  ×  104 %,  respecti-
vely. The specific detectivity (D*) is another important parame-
ter for a photodetector, which can be defined as follows[27]: 

D∗ = Rλ( SΔf
eIdark

)/, (3)

where Rλ is  responsivity,  and  Δf is  the  band  width.  From  the
data  in Fig.  2,  the D*  was  calculated  to  be  around  3.63  ×
1011 J.

As the synthesized SnS NWs exhibited excellent photore-
sponse  to  NIR  illumination,  we  then  fabricated  photodetect-
ors  based  on  the  aligned  SnS  NW  arrays. Fig.  3(a) demon-
strated the schematic illustration of the typical fabrication pro-
cess.  Briefly,  silicon  substrate  was  coated  with  a  layer  of  Au
film to grow the aligned SnS NW arrays. After the growth, a lay-
er  of  polymethyl  methacrylate  (PMMA)  was  spin-coated  on
the NW arrays. Silver NWs were then coated on the PMMA lay-
er,  acting  as  one  electrode  of  the  device.  In  this  structure,
PMMA  was  used  to  avoid  the  direct  contact  of  Ag  NWs  with
Si,  another  electrode  of  the  device.  The  corresponding  SEM
images  of  the  devices  were  shown  in Figs.  3(b) and 3(c),
clearly  illustrating  the  coating  of  Ag  NWs  and  PMMA  on  the
SnS NW arrays (marked with arrows).
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Fig. 2. (Color online) Characterizations of the single SnS nanowire based photodetector. (a) SEM image of a single nanowire device. (b) I–V curves
of the device to NIR lights of 808, 915, 1064 and 1342 nm, respectively. (c) I–V curves of the device to 1064 nm lights with different light inten-
sities. (d) Light intensity dependent photocurrent at a fixed bias voltage of 3 V. (e) The reproducible and stable switching behavior of the device
to 1064 nm light. (f) Transient response and decay time of the device.
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The  photoresponse  performance  of  the  aligned  NW  ar-
rays based photodetectors were then measured at room tem-
perature. Fig.  4(a) gave  the I–V curves  of  the  device  to  NIR
lights with different wavelengths as well  as in dark condition.
Similar  to  single  SnS  NW,  the  NW  arrays  based  photodetect-
ors  exhibited  obvious  response  to  NIR  lights  with  light

wavelengths  ranging  from  808  to  1450  nm.  As  the  direct
bandgap  of  SnS  is  1.1  eV,  we  then  studied  the  photore-
sponse of the SnS NW arrays based photodetector to the NIR
light  with  the  wavelength  of  1064  nm  in  detail.  Photore-
sponse of  the device to 1064 nm light  with different  light  in-
tensities  was  shown  in Fig.  4(b).  The  photocurrents  were
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Fig. 3. (Color online) (a) Schematic of the fabrication process of the aligned SnS nanowire arrays based photodetectors. (b) SEM images of the
aligned SnS nanowires deposited with PMMA and Ag nanowires.
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Fig. 4. (Color online) Characterizations of the aligned SnS nanowire array based photodetectors. (a) I–V curves of the nanowire array device to
NIR lights with different wavelengths. (b) I–V curves of the device to 1064 nm lights with different light intensities. (c) Reproducible and stable
switching behavior of the device to 1064 nm light. (d) Transient response and decay time of the device.
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found increased gradually with increased light intensities and
their relationship was plotted as ΔI ~ 2.38 × P0.89 (Fig. 4(b) in-
set).  For  photodetectors,  stability  is  one of  the key factors  for
their  practical  applications.  The  repeatability  and  response
speed  of  the  NW  arrays  based  devices  were  thus  studied.
Fig.  4(c) depicted  the  dynamic  current-time  curves  of  the
device  to  1064  nm  light  at  a  fixed  light  intensity  of
(17.94  mW/cm2).  It  was  found  that,  under  same  conditions,
both the photocurrent and the Ion/Ioff ratio of the aligned SnS
NW  arrays  based  device  were  largely  improved  compared
with  those  of  single  SnS  NW  based  device,  indicating  the
improvement  of  light  absorbing  ability  of  the  NW
arrays[11−13].  Besides,  with  periodically  turning  the  incident
light on and off for cycles, no visible change of the photocur-
rents was found for the device, confirming the excellent repro-
ducibility  and  stability.  The  response  time  and  the  recovery
time  of  the  device  can  be  deduced  from  the  dynamic I–T
curve  shown  in Fig.  4(d),  which  was  calculated  to  be  about
4.5  and  0.7  s,  respectively.  These  results  indicated  that  the
as-fabricated  array  device  had  a  favorable  photoresponse
properties  compared  with  other  state-of-the-art  infrared
photodetectors  based  on  semiconductor  nanowires  reported
in the literature[7, 30−32].

4.  Conclusion

In  conclusion,  we  successfully  synthesized  aligned  SnS
NW  arrays  via  a  simple  chemical  vapor  deposition  method.
As-growth NWs exhibited excellent  response to  near  infrared
lights in terms of good responsivity, high external quantum ef-
ficiency and fast response time. Photodetectors were built on
the  aligned  SnS  NW  arrays.  Due  to  the  light  trapping  ability
of  the  aligned  NW  arrays,  both  the  photocurrent  and  the
Ion/Ioff ratio  of  the  aligned  SnS  NW  arrays  based  device  were
largely improved compared with their single SnS NW counter-
part.  By  using  direct  transfer  method,  flexible  photodetect-
ors  are expected to be fabricated for  next  generation flexible
electronic applications and related work is still in progress.
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